Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
نویسندگان
چکیده
منابع مشابه
Fast prediction and evaluation of gravitational waveforms using surrogate models
Scott E. Field, Chad R. Galley, Jan S. Hesthaven, Jason Kaye, and Manuel Tiglio 1, 2 Department of Physics, Joint Space Sciences Institute, Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA Theoretical Astrophysics, California Institute of Technology, Pasadena, CA, 91125, USA EPFL-SB-MATHICSE, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 La...
متن کاملFast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.
Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1,...
متن کاملhazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures
شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...
A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers
Jonathan Blackman, Scott E. Field, Mark A. Scheel, Chad R. Galley, Daniel A. Hemberger, Patricia Schmidt, and Rory Smith Theoretical Astrophysics 350-17, California Institute of Technology, Pasadena, California 91125, USA Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, USA Mathematics Department, University of Massachusetts Dartmouth, Dartmouth...
متن کاملFast Bayesian updating of large-scale finite element models using CMS technique and surrogate models
A Bayesian probabilistic framework for parameter estimation is applied for updating large-order finite element models of structures using response measurements. Fast and accurate component mode synthesis (CMS) techniques are proposed, consistent with the finite element model parameterization, to achieve drastic reductions in computational effort. Further computational savings are achieved by ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review X
سال: 2014
ISSN: 2160-3308
DOI: 10.1103/physrevx.4.031006